Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38704091

RESUMEN

A considerable number of colon cancer patients with local or local advanced disease suffer from recurrence and there is an urgent need for better prognostic biomarkers in this setting. Here, the transcriptomic landscape of messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs (scaRNAs), pseudogenes and circular RNAs (circRNAs), as well as RNAs denoted as miscellaneous RNAs, was profiled by total RNA sequencing. In addition to well-known coding and non-coding RNAs, differential expression analysis also uncovered transcripts, which have not previously been implicated in colon cancer, such as RNA5SP149, RNU4-2 and SNORD3A. Moreover, there was a profound global upregulation of snRNA pseudogenes, snoRNAs and rRNA pseudogenes in more advanced tumours. A global downregulation of circRNAs in tumours relative to normal tissues was observed, while only few were differentially expressed between tumour stages. Many previously undescribed transcripts, including RNU6-620P, RNU2-20P, VTRNA1-3 and RNA5SP60 indicated strong prognostic biomarker potential in ROC analyses. In summary, this study unveiled numerous differentially expressed RNAs across various classes between recurrent and non-recurrent colon cancer. Notably, there was a significant global upregulation of snRNA pseudogenes, snoRNAs and rRNA pseudogenes in advanced tumours. Many of these newly discovered candidates demonstrated a strong prognostic potential for stage II colon cancer.

2.
Cancer Res ; 83(20): 3340-3353, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37477923

RESUMEN

Circular RNAs (circRNA) are covalently closed molecules that can play important roles in cancer development and progression. Hundreds of differentially expressed circRNAs between tumors and adjacent normal tissues have been identified in studies using RNA sequencing or microarrays, emphasizing a strong translational potential. Most previous studies have been performed using RNA from bulk tissues and lack information on the spatial expression patterns of circRNAs. Here, we showed that the majority of differentially expressed circRNAs from bulk tissue analyses of colon tumors relative to adjacent normal tissues were surprisingly not differentially expressed when comparing cancer cells directly with normal epithelial cells. Manipulating the proliferation rates of cells grown in culture revealed that these discrepancies were explained by circRNAs accumulating to high levels in quiescent muscle cells due to their high stability; on the contrary, circRNAs were diluted to low levels in the fast-proliferating cancer cells due to their slow biogenesis rates. Thus, different subcompartments of colon tumors and adjacent normal tissues exhibited striking differences in circRNA expression patterns. Likewise, the high circRNA content in muscle cells was also a strong confounding factor in bulk analyses of circRNAs in bladder and prostate cancers. Together, these findings emphasize the limitations of using bulk tissues for studying differential circRNA expression in cancer and highlight a particular need for spatial analysis in this field of research. SIGNIFICANCE: The abundance of circRNAs varies systematically between subcompartments of solid tumors and adjacent tissues, implying that differentially expressed circRNAs discovered in bulk tissue analyses may reflect differences in cell type composition between samples.

3.
Cell Chem Biol ; 30(7): 780-794.e8, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37379846

RESUMEN

Overlapping principles of embryonic and tumor biology have been described, with recent multi-omics campaigns uncovering shared molecular profiles between human pluripotent stem cells (hPSCs) and adult tumors. Here, using a chemical genomic approach, we provide biological evidence that early germ layer fate decisions of hPSCs reveal targets of human cancers. Single-cell deconstruction of hPSCs-defined subsets that share transcriptional patterns with transformed adult tissues. Chemical screening using a unique germ layer specification assay for hPSCs identified drugs that enriched for compounds that selectively suppressed the growth of patient-derived tumors corresponding exclusively to their germ layer origin. Transcriptional response of hPSCs to germ layer inducing drugs could be used to identify targets capable of regulating hPSC specification as well as inhibiting adult tumors. Our study demonstrates properties of adult tumors converge with hPSCs drug induced differentiation in a germ layer specific manner, thereby expanding our understanding of cancer stemness and pluripotency.


Asunto(s)
Neoplasias , Células Madre Pluripotentes , Humanos , Diferenciación Celular/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Genómica
4.
Genes Chromosomes Cancer ; 62(7): 377-391, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36562080

RESUMEN

Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Neoplasias Pulmonares/genética , Proliferación Celular/genética , Apoptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt/genética
5.
Cell Rep ; 34(10): 108818, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691101

RESUMEN

Histone variants (HVs) are a subfamily of epigenetic regulators implicated in embryonic development, but their role in human stem cell fate remains unclear. Here, we reveal that the phosphorylation state of the HV H2A.X (γH2A.X) regulates self-renewal and differentiation of human pluripotent stem cells (hPSCs) and leukemic progenitors. As demonstrated by CRISPR-Cas deletion, H2A.X is essential in maintaining normal hPSC behavior. However, reduced levels of γH2A.X enhances hPSC differentiation toward the hematopoietic lineage with concomitant inhibition of neural development. In contrast, activation and sustained levels of phosphorylated H2A.X enhance hPSC neural fate while suppressing hematopoiesis. This controlled lineage bias correlates to occupancy of γH2A.X at genomic loci associated with ectoderm versus mesoderm specification. Finally, drug modulation of H2A.X phosphorylation overcomes differentiation block of patient-derived leukemic progenitors. Our study demonstrates HVs may serve to regulate pluripotent cell fate and that this biology could be extended to somatic cancer stem cell control.


Asunto(s)
Autorrenovación de las Células/fisiología , Histonas/metabolismo , Células Madre Neoplásicas/citología , Células Madre Pluripotentes/citología , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Linaje de la Célula , Ectodermo/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Histonas/deficiencia , Histonas/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Mesodermo/metabolismo , Células Madre Neoplásicas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Nucleosomas/metabolismo , Fosforilación , Células Madre Pluripotentes/metabolismo
6.
Cancer Res ; 81(11): 2874-2887, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771899

RESUMEN

Lipid metabolism rearrangements in nonalcoholic fatty liver disease (NAFLD) contribute to disease progression. NAFLD has emerged as a major risk for hepatocellular carcinoma (HCC), where metabolic reprogramming is a hallmark. Identification of metabolic drivers might reveal therapeutic targets to improve HCC treatment. Here, we investigated the contribution of transcription factors E2F1 and E2F2 to NAFLD-related HCC and their involvement in metabolic rewiring during disease progression. In mice receiving a high-fat diet (HFD) and diethylnitrosamine (DEN) administration, E2f1 and E2f2 expressions were increased in NAFLD-related HCC. In human NAFLD, E2F1 and E2F2 levels were also increased and positively correlated. E2f1 -/- and E2f2 -/- mice were resistant to DEN-HFD-induced hepatocarcinogenesis and associated lipid accumulation. Administration of DEN-HFD in E2f1 -/- and E2f2 -/- mice enhanced fatty acid oxidation (FAO) and increased expression of Cpt2, an enzyme essential for FAO, whose downregulation is linked to NAFLD-related hepatocarcinogenesis. These results were recapitulated following E2f2 knockdown in liver, and overexpression of E2f2 elicited opposing effects. E2F2 binding to the Cpt2 promoter was enhanced in DEN-HFD-administered mouse livers compared with controls, implying a direct role for E2F2 in transcriptional repression. In human HCC, E2F1 and E2F2 expressions inversely correlated with CPT2 expression. Collectively, these results indicate that activation of the E2F1-E2F2-CPT2 axis provides a lipid-rich environment required for hepatocarcinogenesis. SIGNIFICANCE: These findings identify E2F1 and E2F2 transcription factors as metabolic drivers of hepatocellular carcinoma, where deletion of just one is sufficient to prevent disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/2874/F1.large.jpg.


Asunto(s)
Carcinoma Hepatocelular/patología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/metabolismo , Lípidos/análisis , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Animales , Carcinógenos , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F2/genética , Regulación de la Expresión Génica , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Regiones Promotoras Genéticas
7.
EBioMedicine ; 40: 406-421, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30594553

RESUMEN

BACKGROUND: Even though liver kinase B1 (LKB1) is usually described as a tumor suppressor in a wide variety of tissues, it has been shown that LKB1 aberrant expression is associated with bad prognosis in Hepatocellular Carcinoma (HCC). METHODS: Herein we have overexpressed LKB1 in human hepatoma cells and by using histidine pull-down assay we have investigated the role of the hypoxia-related post-translational modification of Small Ubiquitin-related Modifier (SUMO)ylation in the regulation of LKB1 oncogenic role. Molecular modelling between LKB1 and its interactors, involved in regulation of LKB1 nucleocytoplasmic shuttling and LKB1 activity, was performed. Finally, high affinity SUMO binding entities-based technology were used to validate our findings in a pre-clinical mouse model and in clinical HCC. FINDINGS: We found that in human hepatoma cells under hypoxic stress, LKB1 overexpression increases cell viability and aggressiveness in association with changes in LKB1 cellular localization. Moreover, by using site-directed mutagenesis, we have shown that LKB1 is SUMOylated by SUMO-2 at Lys178 hampering LKB1 nucleocytoplasmic shuttling and fueling hepatoma cell growth. Molecular modelling of SUMO modified LKB1 further confirmed steric impedance between SUMOylated LKB1 and the STe20-Related ADaptor cofactor (STRADα), involved in LKB1 export from the nucleus. Finally, we provide evidence that endogenous LKB1 is modified by SUMO in pre-clinical mouse models of HCC and clinical HCC, where LKB1 SUMOylation is higher in fast growing tumors. INTERPRETATION: Overall, SUMO-2 modification of LKB1 at Lys178 mediates LKB1 cellular localization and its oncogenic role in liver cancer. FUND: This work was supported by grants from NIH (US Department of Health and Human services)-R01AR001576-11A1 (J.M.M and M.L.M-C.), Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C), MINECO: SAF2017-87301-R and SAF2014-52097-R integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M., respectively), BFU2015-71017/BMC MINECO/FEDER, EU (to A.D.Q. and I.D.M.), BIOEF (Basque Foundation for Innovation and Health Research): EITB Maratoia BIO15/CA/014; Instituto de Salud Carlos III:PIE14/00031, integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovacion 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M), Asociación Española contra el Cáncer (T.C.D, P·F-T and M.L.M-C), Daniel Alagille award from EASL (to T.C.D), Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M and M.A), La Caixa Foundation Program (to M.L.M), Programma di Ricerca Regione-Università 2007-2009 and 2011-2012, Regione Emilia-Romagna (to E.V.), Ramón Areces Foundation and the Andalusian Government (BIO-198) (A.D.Q. and I.D.M.), ayudas para apoyar grupos de investigación del sistema Universitario Vasco IT971-16 (P.A.), MINECO:SAF2015-64352-R (P.A.), Institut National du Cancer, FRANCE, INCa grant PLBIO16-251 (M.S.R.), MINECO - BFU2016-76872-R to (E.B.). Work produced with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (M.V-R). Finally, Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). Funding sources had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Acetilación , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Línea Celular Tumoral , Supervivencia Celular , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Hipoxia/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Ratones , Modelos Moleculares , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Unión Proteica , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Estrés Fisiológico , Relación Estructura-Actividad , Sumoilación
8.
J Lipid Res ; 58(9): 1903-1915, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28754826

RESUMEN

Osteopontin (OPN) is involved in different liver pathologies in which metabolic dysregulation is a hallmark. Here, we investigated whether OPN could alter liver, and more specifically hepatocyte, lipid metabolism and the mechanism involved. In mice, lack of OPN enhanced cholesterol 7α-hydroxylase (CYP7A1) levels and promoted loss of phosphatidylcholine (PC) content in liver; in vivo treatment with recombinant (r)OPN caused opposite effects. rOPN directly decreased CYP7A1 levels through activation of focal adhesion kinase-AKT signaling in hepatocytes. PC content was also decreased in OPN-deficient (OPN-KO) hepatocytes in which de novo FA and PC synthesis was lower, whereas cholesterol (CHOL) synthesis was higher, than in WT hepatocytes. In vivo inhibition of cholesterogenesis normalized liver PC content in OPN-KO mice, demonstrating that OPN regulates the cross-talk between liver CHOL and PC metabolism. Matched liver and serum samples showed a positive correlation between serum OPN levels and liver PC and CHOL concentration in nonobese patients with nonalcoholic fatty liver. In conclusion, OPN regulates CYP7A1 levels and the metabolic fate of liver acetyl-CoA as a result of CHOL and PC metabolism interplay. The results suggest that CYP7A1 is a main axis and that serum OPN could disrupt liver PC and CHOL metabolism, contributing to nonalcoholic fatty liver disease progression in nonobese patients.


Asunto(s)
Colesterol/metabolismo , Hígado/metabolismo , Osteopontina/metabolismo , Fosfatidilcolinas/metabolismo , Adulto , Anciano , Animales , Colesterol 7-alfa-Hidroxilasa/metabolismo , Progresión de la Enfermedad , Espacio Extracelular/metabolismo , Femenino , Técnicas de Inactivación de Genes , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Osteopontina/sangre , Osteopontina/deficiencia , Osteopontina/genética , Adulto Joven
9.
Oncotarget ; 6(4): 2509-23, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25650664

RESUMEN

The current view of cancer progression highlights that cancer cells must undergo through a post-translational regulation and metabolic reprogramming to progress in an unfriendly environment. In here, the importance of neddylation modification in liver cancer was investigated. We found that hepatic neddylation was specifically enriched in liver cancer patients with bad prognosis. In addition, the treatment with the neddylation inhibitor MLN4924 in Phb1-KO mice, an animal model of hepatocellular carcinoma showing elevated neddylation, reverted the malignant phenotype. Tumor cell death in vivo translating into liver tumor regression was associated with augmented phosphatidylcholine synthesis by the PEMT pathway, known as a liver-specific tumor suppressor, and restored mitochondrial function and TCA cycle flux. Otherwise, in protumoral hepatocytes, neddylation inhibition resulted in metabolic reprogramming rendering a decrease in oxidative phosphorylation and concomitant tumor cell apoptosis. Moreover, Akt and LKB1, hallmarks of proliferative metabolism, were altered in liver cancer being new targets of neddylation. Importantly, we show that neddylation-induced metabolic reprogramming and apoptosis were dependent on LKB1 and Akt stabilization. Overall, our results implicate neddylation/signaling/metabolism, partly mediated by LKB1 and Akt, in the development of liver cancer, paving the way for novel therapeutic approaches targeting neddylation in hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Metabolismo Energético , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Ciclopentanos/farmacología , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Proteína NEDD8 , Prohibitinas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Pirimidinas/farmacología , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Trasplante Heterólogo , Ubiquitinas/genética , Ubiquitinas/metabolismo
10.
Hepatology ; 59(5): 1972-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24338587

RESUMEN

UNLABELLED: Sirtuin1 (SIRT1) regulates central metabolic functions such as lipogenesis, protein synthesis, gluconeogenesis, and bile acid (BA) homeostasis through deacetylation. Here we describe that SIRT1 tightly controls the regenerative response of the liver. We performed partial hepatectomy (PH) to transgenic mice that overexpress SIRT1 (SIRT). SIRT mice showed increased mortality, impaired hepatocyte proliferation, BA accumulation, and profuse liver injury after surgery. The damaging phenotype in SIRT mice correlated with impaired farnesoid X receptor (FXR) activity due to persistent deacetylation and lower protein expression that led to decreased FXR-target gene expression; small heterodimer partner (SHP), bile salt export pump (BSEP), and increased Cyp7A1. Next, we show that 24-norUrsodeoxycholic acid (NorUDCA) attenuates SIRT protein expression, increases the acetylation of FXR and neighboring histones, restores trimethylation of H3K4 and H3K9, and increases miR34a expression, thus reestablishing BA homeostasis. Consequently, NorUDCA restored liver regeneration in SIRT mice, which showed increased survival and hepatocyte proliferation. Furthermore, a leucine-enriched diet restored mammalian target of rapamycin (mTOR) activation, acetylation of FXR and histones, leading to an overall lower BA production through SHP-inhibition of Cyp7A1 and higher transport (BSEP) and detoxification (Sult2a1) leading to an improved liver regeneration. Finally, we found that human hepatocellular carcinoma (HCC) samples have increased presence of SIRT1, which correlated with the absence of FXR, suggesting its oncogenic potential. CONCLUSION: We define SIRT1 as a key regulator of the regenerative response in the liver through posttranscriptional modifications that regulate the activity of FXR, histones, and mTOR. Moreover, our data suggest that SIRT1 contributes to liver tumorigenesis through dysregulation of BA homeostasis by persistent FXR deacetylation.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Regeneración Hepática , Receptores Citoplasmáticos y Nucleares/fisiología , Transducción de Señal/fisiología , Sirtuina 1/fisiología , Serina-Treonina Quinasas TOR/fisiología , Acetilación , Animales , Ácidos y Sales Biliares/toxicidad , Proliferación Celular , Homeostasis , Neoplasias Hepáticas/etiología , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Hepatology ; 58(4): 1296-305, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23505042

RESUMEN

UNLABELLED: Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are the primary genes involved in hepatic S-adenosylmethionine (SAMe) synthesis and degradation, respectively. Mat1a ablation in mice induces a decrease in hepatic SAMe, activation of lipogenesis, inhibition of triglyceride (TG) release, and steatosis. Gnmt-deficient mice, despite showing a large increase in hepatic SAMe, also develop steatosis. We hypothesized that as an adaptive response to hepatic SAMe accumulation, phosphatidylcholine (PC) synthesis by way of the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway is stimulated in Gnmt(-/-) mice. We also propose that the excess PC thus generated is catabolized, leading to TG synthesis and steatosis by way of diglyceride (DG) generation. We observed that Gnmt(-/-) mice present with normal hepatic lipogenesis and increased TG release. We also observed that the flux from PE to PC is stimulated in the liver of Gnmt(-/-) mice and that this results in a reduction in PE content and a marked increase in DG and TG. Conversely, reduction of hepatic SAMe following the administration of a methionine-deficient diet reverted the flux from PE to PC of Gnmt(-/-) mice to that of wildtype animals and normalized DG and TG content preventing the development of steatosis. Gnmt(-/-) mice with an additional deletion of perilipin2, the predominant lipid droplet protein, maintain high SAMe levels, with a concurrent increased flux from PE to PC, but do not develop liver steatosis. CONCLUSION: These findings indicate that excess SAMe reroutes PE towards PC and TG synthesis and lipid sequestration.


Asunto(s)
Hígado/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , S-Adenosilmetionina/metabolismo , Triglicéridos/metabolismo , Animales , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Hígado Graso/fisiopatología , Femenino , Glicina N-Metiltransferasa/deficiencia , Glicina N-Metiltransferasa/genética , Homeostasis/fisiología , Metabolismo de los Lípidos/fisiología , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Perilipina-2
12.
Hepatology ; 57(2): 505-14, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22961556

RESUMEN

UNLABELLED: Susceptibility to develop nonalcoholic fatty liver disease (NAFLD) has genetic bases, but the associated variants are uncertain. The aim of the present study was to identify genetic variants that could help to prognose and further understand the genetics and development of NAFLD. Allele frequencies of 3,072 single-nucleotide polymorphisms (SNPs) in 92 genes were characterized in 69 NAFLD patients and 217 healthy individuals. The markers that showed significant allele-frequency differences in the pilot groups were subsequently studied in 451 NAFLD patients and 304 healthy controls. Besides this, 4,414 type 2 diabetes mellitus (T2DM) cases and 4,567 controls were genotyped. Liver expression of the associated gene was measured and the effect of its potential role was studied by silencing the gene in vitro. Whole genome expression, oxidative stress (OS), and the consequences of oleic acid (OA)-enriched medium on lipid accumulation in siSLC2A1-THLE2 cells were studied by gene-expression analysis, dihydroethidium staining, BODIPY, and quantification of intracellular triglyceride content, respectively. Several SNPs of SLC2A1 (solute carrier family 2 [facilitated glucose transporter] member 1) showed association with NAFLD, but not with T2DM, being the haplotype containing the minor allele of SLC2A1 sequence related to the susceptibility to develop NAFLD. Gene-expression analysis demonstrated a significant down-regulation of SLC2A1 in NAFLD livers. Enrichment functional analyses of transcriptome profiles drove us to demonstrate that in vitro silencing of SLC2A1 induces an increased OS activity and a higher lipid accumulation under OA treatment. CONCLUSIONS: Genetic variants of SLC2A1 are associated with NAFLD, and in vitro down-regulation of this gene promotes lipid accumulation. Moreover, the oxidative response detected in siSLC2A1-THLE2 cells corroborated the antioxidant properties previously related to this gene and linked the most representative clinical characteristics of NAFLD patients: oxidative injury and increased lipid storage.


Asunto(s)
Hígado Graso/genética , Transportador de Glucosa de Tipo 1/genética , Adolescente , Adulto , Anciano , Diabetes Mellitus Tipo 2/genética , Femenino , Frecuencia de los Genes , Silenciador del Gen , Predisposición Genética a la Enfermedad , Transportador de Glucosa de Tipo 1/biosíntesis , Humanos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico , Ácido Oléico/farmacología , Estrés Oxidativo/genética , Polimorfismo de Nucleótido Simple , Transcriptoma
13.
Gastroenterology ; 143(3): 787-798.e13, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22687285

RESUMEN

BACKGROUND & AIMS: Patients with cirrhosis are at high risk for developing hepatocellular carcinoma (HCC), and their liver tissues have abnormal levels of S-adenosylmethionine (SAMe). Glycine N-methyltransferase (GNMT) catabolizes SAMe, but its expression is down-regulated in HCC cells. Mice that lack GNMT develop fibrosis and hepatomas and have alterations in signaling pathways involved in carcinogenesis. We investigated the role of GNMT in human HCC cell lines and in liver carcinogenesis in mice. METHODS: We studied hepatoma cells from GNMT knockout mice and analyzed the roles of liver kinase B1 (LKB1, STK11) signaling via 5'-adenosine monophosphate-activated protein kinase (AMPK) and Ras in regulating proliferation and transformation. RESULTS: Hepatoma cells from GNMT mice had defects in LKB1 signaling to AMPK, making them resistant to induction of apoptosis by adenosine 3',5'-cyclic monophosphate activation of protein kinase A and calcium/calmodulin-dependent protein kinase kinase 2. Ras-mediated hyperactivation of LKB1 promoted proliferation of GNMT-deficient hepatoma cells and required mitogen-activated protein kinase 2 (ERK) and ribosomal protein S6 kinase polypeptide 2 (p90RSK). Ras activation of LKB1 required expression of RAS guanyl releasing protein 3 (RASGRP3). Reduced levels of GNMT and phosphorylation of AMPKα at Thr172 and increased levels of Ras, LKB1, and RASGRP3 in HCC samples from patients were associated with shorter survival times. CONCLUSIONS: Reduced expression of GNMT in mouse hepatoma cells and human HCC cells appears to increase activity of LKB1 and RAS; activation of RAS signaling to LKB1 and RASGRP3, via ERK and p90RSK, might be involved in liver carcinogenesis and be used as a prognostic marker. Reagents that disrupt this pathway might be developed to treat patients with HCC.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Glicina N-Metiltransferasa/deficiencia , Neoplasias Hepáticas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis , Azacitidina/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Metilación de ADN , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Glicina N-Metiltransferasa/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Carga Tumoral , Factores de Intercambio de Guanina Nucleótido ras
14.
Hepatology ; 56(5): 1870-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22576182

RESUMEN

UNLABELLED: RNA-binding proteins (RBPs) play a major role in the control of messenger RNA (mRNA) turnover and translation rates. We examined the role of the RBP, human antigen R (HuR), during cholestatic liver injury and hepatic stellate cell (HSC) activation. HuR silencing attenuated fibrosis development in vivo after BDL, reducing liver damage, oxidative stress, inflammation, and collagen and alpha smooth muscle actin (α-SMA) expression. HuR expression increased in activated HSCs from bile duct ligation mice and during HSC activation in vitro, and HuR silencing markedly reduced HSC activation. HuR regulated platelet-derived growth factor (PDGF)-induced proliferation and migration and controlled the expression of several mRNAs involved in these processes (e.g., Actin, matrix metalloproteinase 9, and cyclin D1 and B1). These functions of HuR were linked to its abundance and cytoplasmic localization, controlled by PDGF, by extracellular signal-regulated kinases (ERK) and phosphatidylinositol 3-kinase activation as well as ERK/LKB1 (liver kinase B1) activation, respectively. More important, we identified the tumor suppressor, LKB1, as a novel downstream target of PDGF-induced ERK activation in HSCs. HuR also controlled transforming growth factor beta (TGF-ß)-induced profibrogenic actions by regulating the expression of TGF-ß, α-SMA, and p21. This was likely the result of an increased cytoplasmic localization of HuR, controlled by TGF-ß-induced p38 mitogen-activated protein kinase activation. Finally, we found that HuR and LKB1 (Ser428) levels were highly expressed in activated HSCs in human cirrhotic samples. CONCLUSION: Our results show that HuR is important for the pathogenesis of liver fibrosis development in the cholestatic injury model, for HSC activation, and for the response of activated HSC to PDGF and TGF-ß.


Asunto(s)
Antígenos de Superficie/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Actinas/metabolismo , Animales , Antígenos de Superficie/genética , Butadienos/farmacología , Tetracloruro de Carbono , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Conducto Colédoco , Proteínas ELAV , Proteína 1 Similar a ELAV , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/fisiología , Humanos , Ligadura , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Ratones , Nitrilos/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/efectos de los fármacos , Proteínas de Unión al ARN/genética , Ratas , Factor de Crecimiento Transformador beta/metabolismo
15.
Hepatology ; 54(6): 1975-86, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21837751

RESUMEN

UNLABELLED: Very low-density lipoprotein (VLDL) secretion provides a mechanism to export triglycerides (TG) from the liver to peripheral tissues, maintaining lipid homeostasis. In nonalcoholic fatty liver disease (NAFLD), VLDL secretion disturbances are unclear. Methionine adenosyltransferase (MAT) is responsible for S-adenosylmethionine (SAMe) synthesis and MAT I and III are the products of the MAT1A gene. Deficient MAT I and III activities and SAMe content in the liver have been associated with NAFLD, but whether MAT1A is required for normal VLDL assembly remains unknown. We investigated the role of MAT1A on VLDL assembly in two metabolic contexts: in 3-month-old MAT1A-knockout mice (3-KO), with no signs of liver injury, and in 8-month-old MAT1A-knockout mice (8-KO), harboring nonalcoholic steatohepatitis. In 3-KO mouse liver, there is a potent effect of MAT1A deletion on lipid handling, decreasing mobilization of TG stores, TG secretion in VLDL and phosphatidylcholine synthesis via phosphatidylethanolamine N-methyltransferase. MAT1A deletion also increased VLDL-apolipoprotein B secretion, leading to small, lipid-poor VLDL particles. Administration of SAMe to 3-KO mice for 7 days recovered crucial altered processes in VLDL assembly and features of the secreted lipoproteins. The unfolded protein response was activated in 8-KO mouse liver, in which TG accumulated and the phosphatidylcholine-to-phosphatidylethanolamine ratio was reduced in the endoplasmic reticulum, whereas secretion of TG and apolipoprotein B in VLDL was increased and the VLDL physical characteristics resembled that in 3-KO mice. MAT1A deletion also altered plasma lipid homeostasis, with an increase in lipid transport in low-density lipoprotein subclasses and decrease in high-density lipoprotein subclasses. CONCLUSION: MAT1A is required for normal VLDL assembly and plasma lipid homeostasis in mice. Impaired VLDL synthesis, mainly due to SAMe deficiency, contributes to NAFLD development in MAT1A-KO mice.


Asunto(s)
Hígado Graso/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Metionina Adenosiltransferasa/genética , Animales , Apolipoproteínas B/metabolismo , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microsomas Hepáticos/química , Enfermedad del Hígado Graso no Alcohólico , S-Adenosilmetionina/metabolismo , Triglicéridos/sangre , Respuesta de Proteína Desplegada/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...